was changed at hourly intervals during the experiment. A current of $10-20$ milliamperes was maintained by suitable variation of the applied voltage (500-2000 volts).

In two typical experiments (Table I) 15-20\% of the total nitrogen passed through the parchment membrane into the cathode cell. When the cathode fraction was assayed for ACTH potency by the ascorbic acid depletion method of Sayers, et al., ${ }^{5}$ it was found to contain almost all the hormone activity. The residue (77% of the total nitrogen) in the center compartment contained less than 1% of the original activity.

Incubation with pepsin ${ }^{3 \mathrm{a}}$ in 0.01 N hydrochloric acid solution for 24 hours at 37° or heating a 1% solution in 0.2 N hydrochloric acid in a boiling water-bath ${ }^{6}$ for one hour did not lead to inactivation of the cathode fraction. In preliminary ultracentrifugal studies on the cathode fraction, only one component with an S_{20} value of approximately 1.0 was detected.
(5) M. Sayers, G. Sayers and L. A. Woodbury, Endocrinology. 42, 379 (1948).
(6) C. H. Li, This Journal, 73, 4146 (1951).

Department of Biochemistry George P. Hess University of California J. Ieuan Harris Berkeley, California Frederick H. Carpenter Снон Hao Li

Received October 22, 1951

THE PATHWAY OF INOSITOL FERMENTATION IN AEROBACTER AEROGENES ${ }^{1}$

Sir:

Previous work from this Laboratory ${ }^{2}$ has indicated that myo-inositol ${ }^{3}$ is metabolized by a pathway not involving conversion to glucose and degradation according to the Embden-Meyerhoff scheme, Further information has been obtained by the use of suspensions of A, aerogenes grown with strong aeration in a mineral medium containing glucose or $m y o$-inositol as the sole source of carbon. Such cells are unable to split formic acid ${ }^{4}$ or to produce acetoin. Thus, the fermentation of glucose, studied in a conventional Warburg apparatus in bicarbonate buffer in an atmosphere of 5% CO_{2} and $95 \% \mathrm{~N}_{2}$, resulted in the formation of acid, but not of CO_{2} or H_{2}. In a typical experiment 0.32 mole of ethanol, 0.79 mole of lactate and 1.23 equivalents of other acids were formed per mole of glucose. When the phosphoclastic attack on pyruvate was inhibited by $0.0016 M$ arsenite, 1.95 mole of lactate were formed,
myo-Inositol, 2 -keto-myo-inositol, L-1-keto-myoinositol, and L-1,2-diketo-myo-inositol were fermented by cells grown on myo-inositol, but not by cells grown on glucose. All four substrates yielded acid and CO_{2} but no H_{2}. 2 -Keto-myo-inositol and L-1,2-diketo-myo-inositol were fermented two to three times as fast as myo-inositol or L-1-keto-myoinositol. The fermentation of myo-inositol produced 0.68 mole of $\mathrm{CO}_{2}, 0.72$ mole of ethanol and
(1) Supported by the William F. Milton Fund.
(2) B. Magasanik, Am. Chem. Soc., Abst. of Papers, 119th Meeting, 20C (1951).
(3) Formerly meso-inositol. For the nomenclature of inositol derivatives see H. G. Fletcher, Jr, L. Anderson, and H. A. Lardy, J. Org. Chem., 16, 1238 (1951).
(4) J. L. Stoken, J. Bact, 67, 147 (1949),
1.54 equivalents of acid per mole. In the presence of arsenite, 0.72 mole of $\mathrm{CO}_{2}, 0,72$ mole of ethanol, 0.68 mole of lactate, and 0.56 equivalent of unidentified acids were formed. These results show clearly that the CO_{2} and the ethanol formed from myo-inositol are not derived from pyruvate.

On the basis of these and earlier experiments the following pathway of myo-inositol degradation may be tentatively suggested: myo-inositol $2 \mathrm{H} \rightarrow 2$-keto-myo-inositol $-2 \mathrm{H} \rightarrow$ L-1, 2 -diketo-myoinositol $-2 \mathrm{H} \rightarrow \mathrm{CO}_{2}+$ acetate + pyruvate $+6 \mathrm{H} \rightarrow$ $\mathrm{CO}_{2}+$ ethanol + lactate.

These end-products account for 70% of the myo-inositol. Since the first steps in this scheme are dehydrogenations, the greater rate of fermentation found for 2 -keto-myo-inositol and $\mathrm{L}-1,2$ -diketo-myo-inositol may be explained by their ability to act as hydrogen acceptors.

Similar pathways in which dehydrogenations precede cleavage of the carbon chain may not be restricted to inositol. The recent demonstration ${ }^{3}$ that fermentation of glucose by Leuconostoc mesenteroides yields equimolar quantities of CO_{2}, ethanol and lactate, and that the rate of fermentation may be increased by hydrogen acceptors indicates that a similar scheme may be the major glycolytic pathway in that organism.
(5) R. D. DeMoss, R. C. Bard and I. C. Gunsalus, J. Bact., 62, 499 (1951).

Department of Bacteriology and Immunology
Harvard Medical School
Boris Magasanik Boston 15, Mass.

Received November 7, 1951

CRYSTALLIZATION OF A DERIVATIVE OF PROTOGEN-B

Sir:
The protozoan Tetrahymena geleii needs an unidentified fraction present in liver and other natural materials for growth. ${ }^{1,2}$ The name "protogen" has been used to designate the substance or substances which are responsible for this growth effect. Concentrates with "protogen" activity have been shown to be needed for the growth of an unidentified Corynebacterium ${ }^{3}$ and to have activity corresponding to the "acetate factor" ${ }_{4,5}$ and the "pyruvate oxidation factor." 6

Reed, et al., ${ }^{7}$ have reported the crystallization of a compound designated α-lipoic acid which appears to have biological properties similar to those of protogen.

The protogen activity of a papain digest of a water-insoluble fraction of liver was not extractable by organic solvents. However, after autoclaving with 3.3 N sodium hydroxide and acidifying with hydrochloric acid, the activity could be extracted with chloroform. Counter-current extraction by the method of Craig ${ }^{8}$ using several solvent systems
(1) G. W. Kidder and V. Dewey, Arch. Biochem., 8, 293 (1945).
(2) E. L. R. Stokstad, et al., ibid., 20, 75 (1949).
(3) E. L. R. Stokstad, et al., Proc. Soc. Exptl. Biol. Med., 74, 571 (1950).
(4) E. E. Snell and H. P. Broquist, Arch. Biochem., 28, 326 (1949).
(5) B. M. Guirard, et al., ibid., 9, 381 (1946).
(6) D. J. O'Kane and I. C. Gunsalus, J. Bact., 66, 499 (1948).
(7) L. J. Reed, et al., Science. 114, 93 (1951); J. Biol. Chem., 199, 851, 859 (1951).
(8) I.. C. Craig and O. Poat, Anal, Chem, 21, 500 (1949),

